Самодельный цифровой осциллограф на ардуино и микроконтроллере своими руками. Цифровой осциллограф на микроконтроллере AVR (ATmega32, C) Программа для получения осциллограмм

Максим Керимов
Декабрь 2016 г.

Постановка задачи

Сделать простейший карманный осциллограф с минимальными затратами времени и средств.

Список компонентов

  • Китайский клон платы "Maple Mini" с микроконтроллером STM32F103C8T6 (AKA Blue Pill board).
  • Дисплей 1.8 TFT 128x160 SPI с драйвером ST7735.
  • Пять резисторов и два конденсатора (рис. 3).
  • Линейный регулятор с малым падением напряжения AMS1117-3.3 (по желанию).
  • Щуп-зажим "пинцет" - 2 шт.
  • Кнопка миниатюрная нормально разомкнутая без фиксации, с щелчком.

Рис. 1. Тестовый запуск осциллографа. Синусоида сгенерирована саунд бластером, от того ступенчатая.

Характеристики

7 диапазонов с ценой деления (клетки): 7 µS, 28 µS, 113 µS, 559 µS, 2 mS, 10 mS, 20 mS.
Чувствительность: 0.25 и 1.0 В/дел.
Максимальная амплитуда входного сигнала: 6 В.
Входное сопротивление: 20 kΩ.
Питание: 4 аккумулятора АА.
Потребляемый ток: 80 mA.

Сигнал какой частоты можно увидеть?

Теоретически можно увидеть 477 кГц. Отличить меандр от пилы, теоретически, можно на частотах 350 кГц и ниже. Практически же, более-менее комфортно можно наблюдать сигналы до 200 кГц. Размер клетки: 20 x 20 px.

"Частота развёртки" нашего осциллографа зависит от быстродействия АЦП. В STM32F103 разрядность АЦП фиксирована и равна 12. Это в полтора раза больше, чем нам нужно. В STM32F407, например, разрядность можно уменьшить, что сократит время измерений. Но это уже другая история с другим бюджетом.



Рис. 2. Подключение дисплея.

Рис. 3. Питание и входная цепь.

Делитель напряжения R1-R2 служит для контроля уровня заряда аккумуляторов. В правом верхнем углу экрана - пиктограмма батарейки, как на мобильном телефоне (на фото отсутствует).

Внешний регулятор напряжения нужен не всегда. На плате микроконтроллера есть свой регулятор 3.3 В 100 мА. Если питать дисплей от него, будет греться. На платах другого типа (STM Smart V2 board - с большим разъёмом JTAG) стоит как раз AMS1117, для них внешний не нужен. На некоторых дисплеях тоже есть AMS1117 (и перемычка). Решайте сами.

Последовательно с аккумуляторами имеет смысл поставить выключатель питания ПД9-1 или аналогичный.

Если есть желание увеличить размер своего импеданса, на вход можно добавить неинвертирующий повторитель на ОУ, что позволит достичь значения 1 MΩ и более. Питать ОУ следует непосредственно от аккумуляторов напряжением 4.8 - 5.4 В.

Принцип действия

Половина текста программы - это всевозможные инициализации. Принцип действия цифрового осциллографа прост и очевиден.

АЦП производит серию непрерывных последовательных измерений уровня сигнала. Полученные значения складываются в память средствами DMA. Каждый раз мы засекаем время и определяем продолжительность серии замеров. Так мы узнаём цену деления оси времени.

Анализируя записанные значения уровня сигнала, ищем первый экстремум, после чего рисуем сигнал на экране. Так мы пытаемся сделать подобие синхронизации. Она неплохо работает на гладких сигналах и практически бесполезна на широкополосных.

Даём пользователю насладиться картинкой в течение одной секунды, сами в это время опрашиваем кнопку. Кратковременное нажатие кнопки переключает диапазоны по кругу. Долгое нажатие меняет чувствительность. Затем всё повторяется.

Для компиляции я использую среду CooCox CoIDE. Не выложил сюда Кокс-проект, поскольку он содержит абсолютные пути к файлам. Проще создать новый, чем править все пути. После создания проекта не забудьте подключить библиотеки: RCC, GPIO, DMA, SPI, TIM, ADC.

Как создать CooCox CoIDE проект

  1. Запускаем IDE. Из меню: Project > New Project
  2. Вводим имя, запоминаем где лежит проект.
  3. Выбираем "Board" , жмём "Next >"
  4. STM32 > STM32F103x > STM32F103C8T6 Core Development Board
  5. В окне "Repository" выбираем вкладку "Peripherals" , подключаем библиотеки (см. рис.)
  6. Чтобы Кокс не ругался на stdio.h , задаём: View > Configuration > Link > Library: "Use Base C Library" .
  7. Распаковываем скачанные файлы в папку проекта.
  8. Жмём "F7" .
  9. Ликуем.
  10. Чтобы автор порадовался вашему триумфу, переводим ему 50 рублей на пиво.


Прошивал при помощи программатора-отладчика ST-Link V2. Можно и без него, через USB-Serial адаптер.

Частота измерения: 10 Гц - 7.7 кГц
Макс. входное напряжение: 24В AC / 30В DC
Напряжение питания: 12В DC
Разрешение экрана: 128x64 пикселей
Область экрана осциллограммы: 100x64 пикселей
Информационная область экрана: 28x64 пикселей
Режим триггера: автоматический

Введение

Однажды, просматривая различные интернет сайты по электронике, я наткнулся на очень любопытный проект осциллографа, который был спроектирован с использованием МК PIC18F2550 и графического LCD с контроллером KS0108. Это был веб-сайт Steven Cholewiak . Это была хорошая схема и я решил разработать свой проект осциллографа и использование языка С, на котором я программировал последние года, вместо ассемблера. В качестве среды разработки я использовал , которая основывается на open source AVR-GNU компиляторе и прекрасно работает с . Графическую библиотеку я разработал сам, специально для данного проекта. Если вы захотите ее использовать для каких-то других проектов, то ее необходимо переделывать. При измерении прямоугольного сигнала, максимальная частота, при которой вы увидите хорошую осциллограмму составляет около 5 кГц. Для других форм сигналов (синусоида или треугольный сигнал) максимальная частота составляет около 1 кГц.

Принципиальная схема AVR-осциллографа приведена на картинке ниже (нажмите для увеличения):

Напряжение питания схемы составляет 12 вольт постоянного тока. Из этого напряжения, в дальнейшем получается еще 2 напряжения: +8.2В для IC1 и +5В для IC2, IC3. Устройство может измерять входное напряжение от +2.5В до -2.5В или от 0 до +5В, зависящее от позиции переключателя S1 (выбор типа входного тока: постоянный или переменный). При использовании пробника 1:10, входное напряжение соответственно может быть увеличено в 10 раз. Кроме того, переключателем S2, можно установить дополнительно деление напряжения на 2.

Прошивка ATmega32

Файл прошивки: AVR_oscilloscope.hex, при выборе фьюзов необходимо указать использование внешнего кварца. После, необходимо обязательно отключить JTAG интерфейс, если этого не сделать, то на осциллографе будет отображаться экран инициализации, а после он будет уходить в перезагрузку.

Настройка

Для настройки прибора нужно выполнить всего 2 вещи: настроить контрастность LCD при помощи подстроечного резистора Р2 и выставить центр осциллограммы при помощи подстроечного резистора Р1.

Использование

Вы можете перемещать луч осциллограммы вверх или вниз путем нажатия кнопок S8 и S4. Один квадрат на экране, соответствует 1В.
При помощи кнопок S7 и S3 можно увеличивать или уменьшать частоту измерений. Минимальная частота формы сигнала, которая может быть отображена на LCD составляет 460Гц. Если необходимо посмотреть сигнал с более низкой частотой, например 30Гц, то необходимо нажать S7 для сжатия осциллограммы или S3 для растяжения.
В осциллографе используется автоматический режим триггера. Это означает, что если входной сигнал повторяющийся (к примеру треугольник) то триггер работает хорошо. Но если, форма сигнала постоянно меняется (к примеру какая-то последовательность данных), то для фиксации изображения необходимо нажать кнопку S6. Повторное нажатие S6 возвращает в нормальный режим.

Видео работы осциллографа

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Операционный усилитель

LM358

1 В блокнот
IC2 LCD-дисплей DEM128064A 1 128x64, контроллер KS0108 В блокнот
IC3 МК AVR 8-бит

ATmega32

1 В блокнот
IC4 Линейный регулятор

LM7805

1 В блокнот
D1 Стабилитрон

1N4738A

1 8.2В В блокнот
D2 Выпрямительный диод

1N4007

1 В блокнот
C1 Конденсатор 470 нФ 1 В блокнот
C2 Конденсатор 27 пФ 1 В блокнот
C3 22 мкФ 16 В 1 В блокнот
C4, C7, C9 Конденсатор 100 нФ 3 В блокнот
C5, C6 Конденсатор 22 пФ 2 В блокнот
C8 Электролитический конденсатор 100 мкФ 25 В 1 В блокнот
R1, R2, R4 Резистор

1 МОм

3 В блокнот
R3, R5 Резистор

390 кОм

2 В блокнот
R6 Резистор

56 Ом

1 В блокнот
R7 Резистор

220 Ом

1 В блокнот
P1 Подстроечный резистор 10 кОм 1 В блокнот
P2 Подстроечный резистор 22 кОм 1 В блокнот
X1 Кварц 16 МГц 1
  • режимы работы:
    • осциллограф смешанных сигналов;
    • генератор сигналов произвольной формы;
    • 8-канальный логический анализатор;
    • анализатор спектра;
  • возможность одновременной работы генератора и осциллографа;
  • графический OLED дисплей, размер 0.96"", разрешение 128×64 точки;
  • PDI интерфейс для программирования и отладки;
  • управление с помощью 4-кнопочной клавиатуры;
  • USB коннектор для питания устройства (в дальнейшем программная реализация USB интерфейса).
  • Спецификация измерительного прибора:

    • осциллограф:
      • 2 аналоговых канала;
      • 8 цифровых каналов;
      • аналоговая полоса пропускания - 318 кГц;
      • максимальная скорость выборки - 2 Msps;
      • разрешение - 8 бит;
      • аналоговая синхронизация и внешняя цифровая синхронизация;
      • вертикальный и горизонтальный курсоры;
      • входное сопротивление - 1 МОм;
      • размер буфера для каждого канала - 256;
      • максимальное входное напряжение - ±10 В;
    • генератор сигналов произвольной формы:
      • 1 аналоговый канал;
      • максимальная скорость конвертирования - 1 Msps;
      • аналоговая полоса пропускания - 66 кГц;
      • разрешение - 8 бит;
      • низкое выходное сопротивление;
      • размер буфера - 256;
      • максимальное выходное напряжение - ±2 В.

    Принципиальная схема прибора

    Входные аналоговые каналы осциллографа, выходной канал генератора сигналов - выполнены на JFET операционном усилителе TL064 с низким потреблением. На таком же операционном усилителе выполнен источник опорного напряжения для встроенного аналого-цифрового преобразователя микроконтроллера.

    Питание прибор получает от USB интерфейса, однако можно применить внешний источник напряжения 5 В, но следует быть внимательным и необходимо исключить возможность одновременного подключения внешнего источника и USB интерфейса. Напряжение питания микроконтроллера составляет 3.3 В, с этой целью установлен регулятор напряжения 3.3 В AP7333 . Также, напряжение 3.3 В необходимо для питания контроллера дисплея.

    Для питания операционных усилителей требуется двуполярный источник напряжения + 5 В и -5 В. Для получения отрицательного напряжения -5 В установлен интегральный DC/DC преобразователь TPS60403 (charge pump).

    Источником тактовой частоты для микроконтроллера является внешний кварцевый резонатор 16 МГц.

    Управление, навигация по меню, настройка параметров осуществляются с помощью клавиатуры K1-K4.

    Для программирования (а также для отладки ПО) микроконтроллера используется 2-проводный интерфейс PDI. Данный интерфейс поддерживает высокоскоростное программирование всех пространств энергонезависимой памяти, в т.ч. Flash-память, EEPOM, Fuse-биты, Lock-биты и сигнатурный код пользователя. Программирование осуществляется путем доступа к контроллеру энергонезависимой памяти (NVM-контроллер) и выполнения NVM-контроллером команд.

    Внешний вид печатной платы

    Демонстрация работы прибора

    Любому радиолюбителю сложно представить свою лабораторию без такого важного измерительного прибора, как осциллограф. И, действительно, без специального инструмента, позволяющего анализировать и измерять действующие в цепи сигналы, ремонт большинства современных электронных устройств невозможен.

    С другой стороны, стоимость этих приборов нередко превышает бюджетные возможности рядового потребителя, что вынуждает его искать альтернативные варианты или изготавливать осциллограф своими руками.

    Варианты решения проблемы

    Отказаться от покупки дорогостоящих электронных изделий удаётся в следующих случаях:

    • Использование для этих целей встроенной в ПК или ноутбук звуковой карты (ЗК);
    • Изготовление USB-осциллографа своими руками;
    • Доработка обычного планшета.

    Каждый из перечисленных выше вариантов, позволяющих изготавливать осциллограф своими руками, применим не всегда. Для полноценной работы с самостоятельно собранными приставками и модулями необходимо выполнение следующих обязательных условий:

    • Допустимость определённых ограничений по измеряемым сигналам (по их частоте, например);
    • Наличие опыта обращения со сложными электронными схемами;
    • Возможность доработки планшета.

    Так, осциллограф из звуковой карты, в частности, не позволяет измерять колебательные процессы с частотами, находящимися за пределами её рабочего диапазона (20 Гц-20 кГц). А для изготовления USB-приставки к ПК потребуется определённый опыт сборки и настройки сложных электронных устройств (как и при подключении к обычному планшету).

    Обратите внимание! Вариант, при котором удаётся изготовить осциллограф из ноутбука или планшета при простейшем подходе, сводится к первому случаю, предполагающему использование встроенной ЗК.

    Рассмотрим, как реализуется на практике каждый из указанных выше методов.

    Использование ЗК

    Для реализации этого способа получения изображения потребуется изготовить небольшую по габаритам приставку, состоящую всего из нескольких доступных для каждого электронных компонентов. С её схемой можно ознакомиться на приведённой ниже картинке.

    Основное назначение такой электронной цепочки – обеспечить безопасное поступление внешнего исследуемого сигнала на вход встроенной звуковой карты, имеющей «собственный» аналого-цифровой преобразователь (АЦП). Используемые в ней полупроводниковые диоды гарантируют ограничение амплитуды сигнала на уровне не более 2-х Вольт, а делитель из соединенных последовательно резисторов позволяет подавать на вход напряжения с большими амплитудными значениями.

    К плате с резисторами и диодами со стороны выхода подпаивается провод с имеющимся на ответном конце штекером на 3,5 мм, который вставляется в гнездо ЗК под наименованием «Линейный вход». Исследуемый сигнал подаётся на входные клеммы.

    Важно! Длина соединительного шнура должна быть по возможности короче, что обеспечивает минимальные искажения сигнала при очень низких измеряемых уровнях. В качестве такого соединителя рекомендуется использовать двухжильный провод в медной оплётке (экране).

    Хотя пропускаемые таким ограничителем частоты относятся к НЧ диапазону, указанная предосторожность способствует повышению качества передачи.

    Программа для получения осциллограмм

    Помимо технического оснащения, перед началом измерений следует подготовить соответствующее программное обеспечение (софт). Это значит, что на ПК нужно установить одну из утилит, разработанных специально для получения изображения осциллограммы.

    Таким образом, всего за час или чуть больше удаётся создать условия для исследования и анализа электрических сигналов посредством стационарного ПК (ноутбука).

    Доработка планшета

    Использование встроенной карты

    Для того чтобы приспособить обычный планшет под снятие осциллограмм можно воспользоваться уже описанным ранее способом подключения к звуковому интерфейсу. В этом случае возможны определённые затруднения, так как дискретного линейного входа для микрофона у планшета нет.

    Решить эту проблему удаётся следующим образом:

    • Нужно взять гарнитуру от телефона, в составе которой должен иметься встроенный микрофон;
    • Затем следует уточнить разводку (распиновку) входных клемм на используемом для подключения планшете и сравнить её с соответствующими контактами на штекере гарнитуры;
    • При их совпадении можно смело подключать источник сигнала вместо микрофона, используя уже рассмотренную ранее приставку на диодах и резисторах;
    • В завершении останется установить на планшете специальную программу, способную анализировать сигнал на микрофонном входе и выводить на экран его график.

    Преимущества данного способа подключения к компьютеру – это простота реализации и дешевизна. К его минусам следует отнести малый диапазон измеряемых частот, а также отсутствие стопроцентной гарантии безопасности для планшета.

    Преодолеть эти недостатки удаётся за счёт применения специальных электронных приставок, подключаемых через Bluetooth-модуль или посредством Wi-Fi-канала.

    Самодельная приставка к Bluetooth-модулю

    Подключение по «Bluetooth» осуществляется с помощью отдельного гаждета, представляющего собой приставку со встроенным в неё микроконтроллером АЦП. За счёт использования самостоятельного канала обработки информации удаётся расширить полосу пропускаемых частот до 1 МГц; при этом величина входного сигнала может достигать 10 Вольт.

    Дополнительная информация. Радиус действия такой самостоятельно изготовленной приставки может достигать 10-ти метров.

    Однако собрать такое преобразовательное устройство в домашних условиях способен не каждый, что существенно ограничивает круг пользователей. Для всех не готовых к самостоятельному изготовлению приставки возможен вариант приобретения готового изделия, с 2010 года поступающего в свободную продажу.

    Приведённые выше характеристики могут устроить домашнего мастера, занимающегося ремонтом не очень сложной низкочастотной аппаратуры. Для более трудоёмких ремонтных операций могут потребоваться профессиональные преобразовательные устройства с полосой пропускания до 100 МГц. Эти возможности может обеспечить Wi-Fi-канал, поскольку скорости протокола обмена данными в этом случае несравнимо выше, чем в «Bluetooth».

    Осциллографы-приставки с передачей данных по Wi-Fi

    Вариант передачи цифровых данных по этому протоколу заметно расширяет пропускные способности измерительного устройства. Работающие по данному принципу и свободно продающиеся приставки не уступают по своим характеристикам некоторым образцам классических осциллографов. Однако стоимость их также далека от того, чтобы считаться приемлемой для пользователей со средними доходами.

    В заключение отметим, что с учётом приведённых выше ограничений вариант подключения по Wi-Fi также подходит лишь для ограниченного круга пользователей. Тем же, кто решил отказаться от этого способа, советуем попытаться собрать цифровой осциллограф , обеспечивающий те же характеристики, но за счёт подключения к USB-входу.

    Данный вариант также очень сложен в реализации, так что тем, кто не до конца уверен в своих силах, разумнее будет приобрести имеющуюся в свободной продаже готовую USB-приставку.

    Видео

    Недавно я уже делал обзор на один конструктор, сегодня продолжение небольшой серии обзоров о всяких самодельных вещах для начинающих радиолюбителей.
    Скажу сразу, это конечно не Тектроникс, и даже не DS203, но по своему интересная штучка, хоть по сути и игрушка.
    Обычно перед тестами сначала вещь разбирают, здесь сначала надо собрать:)

    На мой взгляд, это «глаза» радиолюбителя. Этот прибор редко обладает высокой точностью, в отличие от мультиметра, но позволяет увидеть процессы в динамике, т.е. в «движении».
    Иногда такой секундный «взгляд» может помочь больше, чем день ковыряния с тестером.

    Раньше осциллографы были ламповыми, потом их сменили транзисторные, но отображался результат все равно на экране ЭЛТ. Со временем на смену им пришли их цифровые собратья, маленькие, легкие, ну а логическим продолжением стало появление и конструктора для сборки такого прибора.
    Несколько лет назад я на некоторых форумах встречал попытки (порой удачные) разработать самодельный осциллограф. Конструктор конечно проще их и слабее по техническим характеристикам, но могу сказать с уверенностью, собрать его сможет даже школьник.
    Разработан этот конструктор фирмой jyetech. этого прибора на сайте производителя.

    Возможно специалистам этот обзор покажется излишне подробным, но практика общения с начинающими радилюбителями показала, что они так лучше воспринимают информацию.

    В общем обо всем я расскажу немного ниже, а пока стандартное вступление, распаковка.

    Прислали конструктор в обычном пакетике с защелкой, правда двольно плотном.
    Как по мне, то для такого набора очень не помешала бы красивая упаковка. Не с целью защиты от повреждений, а с целю внешней эстетики. Ведь вещь должна быить приятной уже даже на этапе распаковки, ведь это конструктор.

    В пакете находилось:
    Инструкция
    Печатная плата
    Кабель для подключения к измеряемым цепям
    Два пакетика с компонентами
    Дисплей.

    Технические характиристики устройства очень скромные, как по мне это скорее обучающий набор, чем измерительный прибор, хотя и при помощи даже этого прибора можно проводить измерения, пусть и простые.

    Также в комплект входит подробная цветная инструкция на двух листах.
    В инструкции расписана последовательность сборки, калибровки и краткое руководство по использованию.
    Единственный минус, это все на английском, но картинки сделаны понятно, потому даже в таком варианте большая часть будет понятна.
    В инструкции даже обозначены позиционные места элементов и сделаны «чекбоксы», где надо ставить галочку после завершения определенного этапа. Очень продуманно.

    Отдельным листом идет табличка со списком SMD компонентов.
    Стоит отметить, что существует как минимум два варианта устройства. На первой исходно распаян только микроконтроллер, на втором распаяны все SMD компоненты.
    Первый вариант рассчитан на чуть более опытных пользователей.
    В моем обзоре учавствует именно такой вариант, о существовании второго варианта я узнал позже.

    Печатная плата двухсторонняя, как и в прошлом обзоре, даже цвет тот же.
    Сверху нанесена маска с обозначением элементов, одна часть элементов обозначена полностью, вторая имеет только позиционный номер по схеме.

    С обратной стороны маркировки нет, есть только обозначение перемычек и наименование модели устройства.
    Плата покрыта маской, причем маска очень прочная (невольно пришлось проверить), на мой взгляд то что надо именно для начинающих, так как тяжело что то повредить в процессе сборки.

    Как я выше писал, на плату нанесены обозначения устанавливаемых элементов, маркировка четкая, претензий к этому пункту нет.

    Все контакты имеют лужение, паяется плата очень легко, ну почти легко, об этом нюансе в разделе сборки:)

    Как я выше писал, на плате предустановлен микроконтроллер
    Это 32 битный микроконтроллер, базирующийся на ARM 32-bit Cortex™-M3 ядре.
    Максимальная частота работы 72МГц, также он имеет 2 x 12-bit, 1 μs АЦП.

    С обоих сторон платы указана ее модель, DSO138.

    Вернемся к перечислению комплектующих.
    Мелкие радиодетали, разъемы и т.п. упакованы в небольшие пакетики с защелкой.

    Высыпаем на стол содержимое большого пакета. Внутри находятся разъемы, стойки и электролитические конденсаторы. Также в пакете находятся еще два маленьких пакетика:)

    Раскрыв все пакеты мы видим довольно много радиодеталей. Хотя с учетом того что это цифровой осциллограф, то я ожидал больше.
    Приятно то, что SMD резисторы подписаны, хотя как по мне, не мешало бы подписать и обычные резисторы, или дать в комплекте небольшую памятку по цветовой маркировке.

    Дислей упакован в мягкий материал, как оказалось, он не скользит, потому болтаться в пакете не будет, а печатная плата защищает его от повреждений при транспортировке.
    Но все равно, я считаю что нормальная упаковка не помешала бы.

    В устройстве применен 2.4 дюйма TFT LCD индикатор со светодиодной подсветкой.
    Разрешение экрана 320х240 пикселей.

    Также в комплект входит небольшой кабель. Для подключения к осциллографу применен стандартный BNC разъем, на втором конце кабеля пара «крокодилов».
    Кабель средней мягкости, «крокодилы» довольно большие.

    Ну и вид на весь набор в полностью разложенном виде.

    Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.

    В прошлый раз я начинал сборку с резисторов, как с самых низких элементов на плате.
    При наличии SMD компонентов сборку лучше начать с них.
    Для этого я разложил все SMD компоненты на прилагаемом листе с указанием их номинала и позиционного обозначения на схеме.

    Когда приготовился уже паять, то подумал, что элементы в слишком мелком, для начинающего, корпусе, вполне можно было применить резисторы размером 1206 вместо 0805. Разница в занимаемом месте незначительна, но паять проще.
    Вторая мысль была - вот потеряю сейчас резистор и не найду. Ладно я, открою стол и достану второй такой резистор, но не у всех есть такой выбор. В данном случае производитель позаботился об этом.
    Всех резисторов (жалко что и не микросхем) дал на один больше, т.е. в запас, очень предусмотрительно, зачет.

    Дальше я немного расскажу о том, как паяю такие компоненты я, и как советую делать другим, но это просто мое мнение, естественно каждый может делать по своему.
    Иногда SMD компоненты паяют при помощи специальной пасты, но она нечасто есть у начинающего радиолюбителя (да и у неначинающего тоже), потому я покажу как проще работать без нее.
    Берем пинцетом компонент, прикладываем к месту установки.

    Вообще часто я сначала промазываю место установки компонента флюсом, это облегчает пайку, но усложняет промывку платы, вымыть флюс из под компонента иногда бывает сложно.
    Поэтому я в данном случае использовал просто 1мм трубчатый припой с флюсом.
    Придерживая компонент пинцетом, набираем на жало паяльника капельку припоя и припаиваем одну сторону компонента.
    Не страшно если пайка получилась некрасивая или не очень прочная, на данном этапе достаточно того, что компонент держится сам.
    Затем повторяем операцию с остальными компонентами.
    После того как мы таким образом закрепили все компоненты (или все компоненты одного номинала), можно спокойно припаять как надо, для этого поворачиваем плату так, чтобы уже припаянная сторона была слева и держа паяльник в правой руке (если вы правша), а припой в левой, проходим все незапаянные места. Если пайка второй стороны не устраивает, то поворачиваем плату на 180 градусов и аналогично пропаиваем другую сторону компонента.
    Так получается проще и быстрее, чем запаивать каждый компонент индивидуально.

    Здесь на фото видно несколько установленных резисторов, но пока припаянных только с одной стороны.

    Микросхемы в SMD корпусе маркируются точно так же как в обычном, слева около метки (хотя обычно слева снизу если смотреть на маркировку) находится первый контакт, остальные считаются против часовой стрелки.
    На фото место для установки микросхемы и пример, как она должна устанавливаться.

    С микросхемами поступаем полностью аналогично примеру с резисторами.
    Выставляем микросхему на площадках, припаиваем любой один вывод (лучше крайний), немного корректируем положение микросхемы (при необходимости) и запаиваем остальные контакты.
    С микросхемой- стабилизатором можно поступить по разному, но я советую припаивать сначала лепесток, а потом контактные площадки, тогда микросхема точно будет ровно прилегать к плате.
    Но никто не запрещает припаять сначала крайний вывод, а потом все остальные.

    Все SMD компоненты установлены и припаяны, осталось несколько резисторов, по одному каждого номинала, откладываем их в пакетик, может когда нибудь пригодятся.

    Переходим к монтажу обычных резисторов.
    В прошлом обзоре я рассказывал немного о цветовой маркировке. В этот раз я скорее посоветую просто измерить сопротивление резисторов при помощи мультиметра.
    Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет).
    Изначально я искал в инструкции список номиналов и позиционных обозначений, но не нашел, так как искал их в виде таблички, а уже после монтажа выяснилось, что они есть на картинках, причем с чекбоксами для отметки установленных позиций.
    Из-за моей невнимательности мне пришлось сделать свою табличку, по которой я рядом разложил устанавливаемые компоненты.
    Слева отдельно виден резистор, при составлении таблички он был лишним, потому я оставил его под конец.

    С резисторами поступаем похожим образом как в прошлом обзоре, формуем выводы при помощи пинцета (либо специальной оправки) так, чтобы резистор легко становился на свое место.
    Будье внимательны, позиционные обозначения компонетов на плате могут быть не только надписаны, а и ПОДписаны и это может сыграть с вами злую шутку, особенно если на плате присутствует много компонентов в один ряд.

    Вот тут вылез небольшой минус печатной платы.
    Дело в том, что отверстия под резисторы имеют очень большой диаметр, а так как монтаж относительно плотный, то я решил выводы загибать, но несильно и потому в таких отверстиях держатся они не очень хорошо.

    Из-за того, что резисторы держались не очень хорошо, я рекомендую не набивать сразу все номиналы, а установить половину или треть, потом запаять их и установить остальные.
    Не бойтесь сильно обкусывать выводы, двухсторонняя плата с металлизацией прощает такие вещи, всегда можно припаять резистор хоть сверху, чего не сделаешь при односторонней печатной плате.

    Все, резисторы запаяны, переходим к конденсаторам.
    Я поступил с ними также как с резисторами, разложив согласно табличке.
    Кстати у меня все таки остался один лишний резистор, видимо случайно положили.

    Несколько слов о маркировке.
    Такие конденсаторы маркируются также как и резисторы.
    Первые две цифры - число, третья цифра - количество нулей после числа.
    Получившийся результат равен емкости в пикофарадах.
    Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22пФ.
    Они маркируются просто указанием емкости так как емкость меньше 100пФ, т.е. меньше трехзначного числа.

    Сначала запаиваю мелкие конденсаторы согласно позиционным обозначениям (тот еще квест).

    С конденсаторами емкостью 100нФ я немного ступил, не добавив их в табличку сразу, пришлось делать это потом от руки.

    Выводы конденсаторов я также загибал не полностью, а примерно под 45 градусов, этого вполне достаточно чтобы компонент не выпал.
    Кстати, на этом фото видно, что пятачки, соединенные с общим контактом платы, выполнены правильно, есть кольцевой промежуток для уменьшения теплоотдачи, это облегчает пайку таких мест.

    Как то я немного расслабился на этой плате и вспомнил о дросселях и диодах уже после запаивания керамических конденсаторов, хотя лучше было их впаять перед ними.
    Но особо ситуацию это не изменило, потому перейдем к ним.
    В комплекте к плате дали три дросселя и два диода (1N4007 и 1N5815).

    С диодами все ясно, место подписано, катод обозначен белой полосой на самом диоде и на плате, перепутать очень сложно.
    С дросселями бывает немного сложнее, они иногда также имеют цветовую маркировку, благо в данном случае все три дросселя имеют один номинал:)

    На плате дроссели обозначаются буквой L и волнистой линией.
    На фото участок платы с запаянными дросселями и диодами.

    В осциллографе применено два транзистора разной проводимости и две микросхемы стабилизаторы, на разную полярность. В связи с этим будьте внимательны при монтаже, так как обозначение 78L05 очень похоже на 79L05, но если поставить наоборот, то вы скорее всего поедете за новыми.
    С транзисторами немного проще, хоть на плате и указана просто проводимость без указания типа транзистора, но тип транзистора и его позиционное обозначение можно без труда посмотреть по схеме или карте установки компонентов.
    Выводы здесь формовать заметно тяжелее, так как отформовать надо все три вывода, лучше не спешить, чтобы не отломать выводы.

    Формуются выводы одинаково, это упрощает задачу.
    На плате положение транзисторов и стабилизаторов обозначено, но на всякий случай я сделал фото, как они должны быть установлены.

    В комплекте был мощный (относительно) дроссель, который используется в преобразователе для получения отрицательной полярности и кварцевый резонатор.
    Им выводы формовать не надо.

    Теперь о кварцевом резонаторе, он изготовлен под частоту 8МГц, полярности также не имеет, но под него лучше подложить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.
    не удивляйтесь, что я в начале указал что процессор имеет максимальную частоту 72МГц, а кварц стоит всего на 8, внутри процессора есть как делители частоты, так иногда и умножители, потому ядро вполне может работать например на частоте 8х8=64МГц.
    Почему то на плате контакты дросселя имеют квадратную и круглую форму, хотя сам по себе дроссель - элемент неполярный, потому просто впаиваем его на место, выводы лучше не загибать.

    В комплекте дали довольно много электролитических конденсаторов, все они имеют одинаковую емкость в 100мкФ и напряжение в 16 Вольт.
    Их надо запаивать обязательно с соблюдением полярности иначе возможны пиротехнические эффекты:)
    Длинный вывод конденсатора это плюсовой контакт. На плате присутствует маркировка полярности как около соответствующего вывода, так и рядом с кружком, отмечающим положение конденсатора, довольно удобно.
    Отмечен плюсовой вывод. Иногда маркируют минусовой, в этом случае примерно половина кружочка заштриховывается. А еще есть такой производитель компьютерного железа как Асус, который заштриховывает плюсовую сторону, потому всегда надо быть внимательным.

    Потихоньку мы подошли к довольно редкому компоненту, подстроечному конденсатору.
    Это конденсатор, емкость которого можно изменять в небольших пределах, например 10-30пФ, обычно и емкость этих конденсаторов невелика, до 40-50пФ.
    Вообще это элемент неполярный, т.е. формально не имеет значения как его впаивать, но иногда имеет значение как его впаивать.
    Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. ТАк вот в данной схеме один вывод конденсатора подключен к общему проводнику платы, а второй к остальным элементам.
    Чтобы было меньше влияние отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом соединялся с общим проводом платы.
    На плате указана маркировка как впаивать, а дальше по ходу обзора будет и фотка, где это видно.

    Кнопки и переключатели.
    Ну здесь тяжело что то сделать неправильно, так как очень тяжело их вставить как нибудь не так:)
    Скажу лишь, что выводы корпуса переключателей надо припаять к плате.
    В случае переключателя это не просто добавит прочности, а и соединит корпус переключателя с общим контактом платы и корпус переключателя будет работать как экран от помех.

    Разъемы.
    Самая сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, потому для BNC разъема лучше взять паяльник помощнее.

    На фото можно увидеть -
    Пайка BNC разъема, дополнительного разъема питания (единственный разъем здесь, который можно поставить наоборот) и USB разъема.

    С индикатором, а вернее с разъемами для его подключения, вышла небольшая неприятность.
    В комплекте забыли положить пару двойных контактов (пинов), они тут используются для закрепления стороны индикатора, обратной сигнальному разъему.

    Но посмотрев на распиновку сигнального разъема я понял, что некоторые контакты можно запросто откусить и использовать вместо недостающих.
    Я мог открыть ящик стола и достать оттуда такой разъем, но это было бы неинтересно и в какой то степени нечестно.

    Запаиваем гнездовые (так называемые - мамы) части разъемов на плату.

    На плате присутствует выход встроенного генератора 1КГц, он нам потом понадобится, хоть эти два контакта и соединяются друг с другом, но мы все равно впаиваем перемычку, она будет удобна для подключения «крокодила» сигнального кабеля.
    Для перемычки удобно использовать обкушенный вывод электролитического конденсатора, они длинные и довольно жесткие.
    Находится эта перемычка слева от разъема питания.

    Также на плате присутствует пара важных перемычек.
    Одну из них, под названием JP3 надо закоротить сразу, делается это при помощи капельки припоя.

    Со второй перемычкой, немножко сложнее.
    Сначала надо подключить мультиметр в режиме измерения напряжения в контрольной точке, находящейся над лепестком микросхемы-стабилизатора. Второй щуп подключается к любому контакту соединенному с общим контактом платы, например к USB разъему.
    На плату подается питание и проверяется напряжение в контрольной точке, если все в порядке, то там должно быть около 3.3 Вольта.

    После этого перемычка JP4 , находящаяся чуть левее и ниже стабилизатора, также соединяется при помощи капли припоя.

    На обратной стороне платы есть еще четыре перемычки, их трогать не надо, это технологические перемычки, для диагностики платы и перевода процессора в режим прошивки.

    Возвращаемся к дисплею. Как я выше писал, мне пришлось откусить несколько контактных пар, чтобы применить их взамен отсутствующих.
    Но при сборке я решил выкусить не крайние пары, а как бы из середины, а крайнюю запаять на место, так будет сложнее перепутать что то при установке.

    Хоть на дисплее и наклеена защитная пленка, я бы рекомендовал при припаивании разъема накрыть экран куском бумаги, в таком случае капли флюса, который кипит при пайке, будут отлетать на бумагу, а не на экран.

    Все, можно подавать питание и проверять:)
    Кстати, один из диодов, который мы запаивали ранее, служит для защиты электроники от неправильного подключения питания, со стороны разработчика это полезный шаг, так как спалить плату неправильной полярностью можно в секунду.
    На плате указано питание 9 Вольт, но при этом оговорен диапазон до 12 Вольт.
    В тестах я пита плату от 12 Вольт блока питания, но попробовал и от двух последовательно соединенных литиевых аккумуляторов, разница была только в чуть меньшей яркости подсветки экрана, думаю что применив стабилизатор 5 Вольт с низким падением и убрав защитный диод (или подключив его параллельно питанию и установив предохранитель), можно вполне спокойно питать плату от двух литиевых аккумуляторов.
    Как вариант, использовать преобразователь питания 3.7-5 Вольт.

    Так как запуск платы прошел успешно, то перед настройкой плату лучше промыть.
    Я пользуюсь ацетоном, хотя он запрещен к продаже, но есть небольшие запасы, как вариант еще использовали толуол, ну или в крайнем случае медицинский спирт.
    Но плату надо промыть обязательно, целиком «купать» ее не надо, достаточно пройтись снизу ваткой.

    В конце ставим плату «на ноги», используя комплектные стойки, они конечно чуть меньше чем надо и немного болтаются, но все равно так удобнее, чем просто класть на стол, не говоря о том, что выводы деталей могут поцарапать крышку стола, ну и так ничего не попадает под плату и не закоротит ничего под ней.

    Первая проверка от встроенного генератора, для этого подключаем «крокодил» с красным изолятором к перемычке около разъема питания, черный провод никуда подключать не надо.

    Чуть не забыл, несколько слов о назначении переключателей и кнопок.
    Слева расположены три трехпозиционных переключателя.
    Верхний переключает режим работы входа.
    Заземлен
    Режим работы без учета постоянной составляющей, или АС, или режим работы с закрытым входом. Хорошо подходит для измерения переменного тока.
    Режим работы с возможностью измерения постоянного тока, или режим работы с открытым входом. Позволяет проводить измерения с учетом постоянной составляющей напряжения.

    Второй и третий переключатели позволяют выбрать масштаб по оси напряжения.
    Если выбран 1 Вольт, то это означает, что в этом режиме размах в одну масштабную клетку экрана будет равен напряжению в 1 Вольт.
    При этом средний переключатель позволяет выбрать напряжение, а нижний множитель, потому при помощи трех переключателей можно выбрать девять фиксированных уровней напряжения от 10мВ до 5 Вольт на клетку.

    Справа расположены кнопки управления режимами развертки и режима работы.
    Описание кнопок сверху вниз.
    1. При коротком нажатии включает режим HOLD, т.е. фиксация показаний на дисплее. при длинном (более 3 секунд) включает или выключает режим цифрового вывода данных параметра сигнала, частоту, период, напряжения.
    2. Кнопка увеличения выбранного параметра
    3. Кнопка уменьшения выбранного параметра.
    4. Кнопка перебора режимов работы.
    Управление временем развертки, диапазон от 10мкс до 500сек.
    Выбор режима работы триггера синхронизации, Авто, нормальный и ждущий.
    Режим захвата сигнала синхронизации триггером, по фронту или тылу сигнала.
    Выбор уровня напряжения захвата сигнала триггера синхронизации.
    Прокрутка осциллограммы по горизонтали, позволяет просмотреть сигнал «за пределами экрана»
    Установка позиции осциллограммы по вертикали, помогает при измерении напряжений сигнала и когда осциллограмма не влазит на экран…
    Кнопка сброса, просто перезагрузка осциллографа, как выяснилось иногда бывает очень удобна.
    Рядом с кнопкой есть зеленый светодиод, он моргает когда осциллограф синхронизировался.

    Все режимы при выключении прибора запоминаются и включается он потом в том режиме, в котором его выключили.

    Еще на плате есть разъем USB, но как я понял, он в этом варианте не используется, при подключении к компьютеру выдает что обнаружено неизвестное устройство.
    Также есть контакты для перепрошивки устройства.

    Все режимы, выбранные кнопками или переключателями, дублируются на экране осциллографа.

    Версию ПО я не обновлял, так как стоит последняя на текущий момент 113-13801-042

    Настройка прибора очень проста, помогает в этом встроенный генератор.
    Скорее всего при подключении к встроенному генератору прямоугольных импульсов вы увидите следующую картину, вместо ровных прямоугольников будет либо «завал» угла верха/низа, вниз или вверх.

    Корректируется это вращением подстроечных конденсаторов.
    Конденсаторов два, в режиме 0.1 Вольта подстраиваем С4, в режиме 1 Вольт соответственно С6. В режиме 10мВ корректировка не производится.

    Регулировкой необходимо добиться ровных прямоугольных импульсов на экране, как это показано на фотографии.

    Я посмотрел этот сигнал другим осциллографом, на мой взгляд он достаточно «ровный» для калибровки данного осциллографа.

    Хоть конденсаторы и установлены правильно, но даже в таком варианте небольшое влияние от металлической отвертки присутствует, пока удерживаем жало на регулируемом элементе, результат один, стоит убрать жало, результат чуть меняется.
    В таком варианте либо подкручивать маленькими сдвигами, либо использовать пластмассовую (диэлектрическую) отвертку.
    Мне такая отвертка досталась с какой то камерой Хиквижн.

    С одной стороны у нее крестовое жало, причем срезанное, именно для таких конденсаторов, с другой - прямое.

    Так как данный осциллограф больше прибор для изучения принципов работы, чем действительно полноценный прибор, то и проводить полноценное тестирование я не вижу смысла, хотя основные вещи покажу и проверю.
    1. Совсем забыл, иногда при работе внизу экрана вылазит реклама производителя:)
    2. Отображения цифровых значений параметра сигнала, подан сигнал от встроенного генератора прямоугольных импульсов.
    3. Вот такой собственный шум входа осциллографа, в интернет я встречал упоминания об этом, а так же о том, что новая версия имеет меньший уровень шумов.
    4. Для проверки, что это действительно шум аналоговой части, а не наводки, я перевел осциллограф в режим с закороченным входом.

    1. Переключил время развертки в режим 500сек на деление, как по мне, ну это уж совсем для экстремалов.
    2. Уровень входного сигнала можно менять от 10мВ на клетку
    3. До 5 Вольт на клетку.
    4. Прямоугольный сигнал частотой 10КГц с генератора осциллографа DS203.

    1. Прямоугольный сигнал частотой 50КГц с генератора осциллографа DS203. Видно что на такой частоте сигнал уже сильно искажен. 100КГц подавать уже не имеет особого смысла.
    2. Синусоидальный сигнал частотой 20КГц с генератора осциллографа DS203.
    3. Сигнал треугольной формы частотой 20КГц с генератора осциллографа DS203.
    4. Пилообразный сигнал частотой 20КГц с генератора осциллографа DS203.

    Дальше я решил немного посмотреть как ведет себя прибор при работе с синусоидальным сигналом, поданным от аналогового генератора и сравнить его со своим DS203
    1. Частота 1КГц
    2. Частота 10КГц

    1. Частота 100КГц, в конструкторе нельзя выбрать время развертки меньше 10мс, потому только так:(
    2. А вот так может выглядеть синусоидальный сигнал частотой 20КГц, поданный с DS203, но в другом режиме входного делителя. Выше был скриншот такого сигнала, но поданный в положении делителя 1 Вольт х 1, здесь сигнал в режиме 0.1 Вольт х 5.
    Ниже видно как выглядит этот сигнал при подаче на DS203

    Сигнал 20КГц, поданный с аналогового генератора.

    Сравнительное фото двух осциллографов, DSO138 и DS203. Оба подключены к аналоговому генератору синуса, частота 20КГц, на обоих осциллографах выставлен одинаковый режим работы.

    Резюме.
    Плюсы
    Интересная обучающая конструкция
    Качественно изготовленная печатная плата, прочное защитное покрытие.
    Собрать конструктор под силу даже начинающему радиолюбителю.
    Продуманная комплектация, порадовали запасные резисторы в комплекте.
    В инструкции хорошо расписан процесс сборки.

    Минусы
    Небольшая частота входного сигнала.
    Забыли положить в комплект пару контактов для крепления индикатора
    Простенькая упаковка.

    Мое мнение. Скажу коротко, был бы у меня в детстве такой конструктор, я был бы наверное очень счастлив, даже несмотря на его недостатки.
    А если длинно, то конструктор приятно порадовал, я считаю его хорошей базой как в получении опыта сборки и наладки электронного устройства, так и в опыте работы с очень важным для радиолюбителя прибором - осциллографом. Пусть простым, пусть без памяти и с низкой частотой, но это куда лучше возни с аудиокартами.
    Как серьезный прибор считать его конечно нельзя, но он таким и не позиционируется, а как конструктор, более чем.
    Зачем я заказал этот конструктор? Да просто было интересно, ведь все мы любим игрушки:)

    Надеюсь что обзор был интересен и полезен, жду предложений по поводу вариантов тестирования:)
    Ну и как всегда, дополнительные материалы, прошивки, инструкции, исходники, схема, описание -

    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: